8章

CHAPTER

8

リモート・コントロール・インタフェース

この章では，GPIB／RS－232 インタフェースでの外部制御とGPIBコードについて説明します。

8章 目次

1．はじめに
8－2

2．GPIBバスの機能 …．．． $8-5$
3．コマンド文法
8－11
4．ステータス・バイト…．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．8－15
5．GPIBコード—覧 …．．8－24
6．プログラム例…．．－46
7．RS－232りモート・コントロール機能……．．．．．．．．－8－65

1．はじめに

本器は，IEEE規格488．1－1978に準拠したGPIB（General Purpose Interface Bus）を標準装備し，外部コントローラによるリモート・コントロールが可能です。また，内蔵コントローラ機能（オ プション）により小規模GPIBシステムを簡単に構築できます。

以下，GPIBリモート・コントロール機能を用いたコントロール方法について説明します。

GPIBとは

GPIB（General Purpose Interface Bus）は，コンピュータと計測器を統合す る高性能のバスを提供します。
このGPIBの動作はIEEE規格488．1－1978によって定義されています。GPIBはバ ス構造のインタフェースのため，各機器が固有の互いに異なる機器アドレス を持つことによって，特定の機器を指定します。これらの機器は1つのバス に15台まで並列に接続できます。GPIB機器は，以下の機能のうち 1 つ以上を備えています。

－トーカ

バスにデータを送信するために指定された機器を「トーカ」と呼びます。 GPIBバス上では，一台の機器のみがアクティブ・トーカとして動作します。
－リスナ
バスのデータを受信するために指定された機器を「リスナ」と㭔びます。 アクティブなリスナ機器は，GPIBバス上に複数存在することができます。
－コントローラ
トーカ，リスナを指定する機器を「コントローラ」と呼びます。
GPIBバス上では一台の機器のみがアクティブ・コントローラとして動作しま す。これらのコントローラのうち，IFC ，およびREN のメッセージをコント ロールできる機器を特に「システム・コントローラ」と呼びます。

システム・コントローラは，GPIBバス上に一台だけ許されます。バス上に複数のコントローラがある場合，システム起動時にはシステム・コントローラ がアクティブ・コントローラとなり，その他のコントローラ能力を持つ機器 はアドレッサブル機器として動作します。

その他のコントローラをアクティブ・コントローラにするにはTake Control （TCT）インタフェース・メッセージを用います。そのとき自分はノンアクテ ィブ・コントローラとなります。

コントローラはインタフェース・メッセージ，またはデバイス・メッセージ を各測定器に送ってシステム全体をコントロールします。
それぞれ以下の役目を果たします。

- インタフェース・メッセージ：GPIBバスをコントロールします。
- デバイス・メッセージ ：測定器をコントロールします。

■GPIBのセット・アップ

－GPIBの接続

以下に標準的なGPIBの接続を示します。GPIBコネクタは2 本のねじでしっか り固定して，使用中にゆるむことがないように注意して下さい。

GPIBインタフェースの使用時においでは，以下のようなことに注意して下さ い。
－1つのバス・システムで使われるGPIBケーブルの全ケーブル長は，2m×接続される機器の数（GPIB コントローラも1 つの機器として数える））以下です。また，全ケーブル長は20m 以下とします。
－ 1 つのバス・システムに接続できる機器の数は，最高15台です。

1．はじめに
－ケーブル間の接続方法には制限はありません。ただし，1 台の機器上に4個以上のGPIBコネクタを重ねないで下さい。4個以上重ねるとコネクタの取り付け部に過度の力が加わり，破損することがあります。

例えば， 5 台の機器から構成されるシステムで使用できる全ケーブル長は， 10 m 以下（ 5 台 $\times 2 \mathrm{~m} /$ 台 $=10 \mathrm{~m}$ ）です。全ケーブル長が許容最大長を超えない範囲で，自由に分配することができます。ただし，10台以上の機器を接続する場合は，何台かの機器を2m以下のケーブルで接続して，全ケーブル長が20m を超えないようにする必要があります。

－GPIBアドレスの設定

2．GPIBバスの機能

GPIBインタフェース機能

コ－ト	説明
SH1	ソース・ハンドシェーク機能あり
AH1	アクセプタ・ハンドシェーク機能あり
T6	基本的トーカ機能，シリアル・ポール機能，リスナ指定によるト ーカ解除機能
TE0	拡張トーカ機能なし
L4	基本的リスナ機能，トーカ指定によるリスナ解除機能
LE0	拡張リスナ機能なし
SR1	サービス・リクエスト機能あり
RL1	リモート機能，ローカル機能，ローカル・ロック・アウト機能
PP0	パラレル・ポール機能なし
DC1	デバイス・クリア機能
DT0	デバイス・トリガ機能なし
C1	システム・コントローラ機能
C2	IFC 送信，コントローラ・イン・チャージ機能
C3	REN 送信機能
C4	SRQレ対する応答機能
C12	インタフェース・メッセージの送信，コントロールの受渡し機能
E1	オープン・コレクタ・バス・ドライバを使用

C1，C2，C3，C4，C12 は，オプション実装時のみ機能します。標準では，C0（システム・コントローラ機能なし）です。

2．GPIBバスの機能

ロコントローラ機能

R3272 には，システム・コントロ－․․モ・モードとアドレッサブル・モードが あります。それぞれのモードの特徴を以下に示します。

	システム・コントローラ・モード （オブションガ必要）	アドレッサブル・モード
起動時	アクティブ・コントローラ	ハアクティブ・コントローラ
IFC	コントロール可	コントロール不可
REN	コントロール可	コントロール不可

アドレッサブル・モードでアクティブ・コントローラになるには，TCT イン タフェース・メッセージを受信しなければなりません。

システム・コントローラは，GPIBバス上に 1 台だけ許されます。GPIBバスで接続されたシステムの起動時には，システム・コントローラがアクティブ・ コントローラとなります。同時にアクティブ・コントローラは，GPIBバス上 に 1台だけ許されます。このアクティブ・コントローラがGPIBバス上の機器 のコントロールを実行します。具体的にはインタフェース・メッセージの送信（IFC およびREN はシステム・コントローラだけが送信する）およびサー ビス・リクエスト（SRQ）の受信を実行します。

インタフェース・メッセージは，トーカとリスナの指示，シリアル・ポール， デバイスクリア，トリガ，ローカルなどを計測器に伝え，サービス・リクエ ストで計測器からの割り込みを受信します。

アクティブ・コントローラは，コントロール権を他のノンアクティブ・コン トローラに渡すことができます。コントロール権を渡したい機器をトーカに して，TCT インタフェース・メッセージを発行すると，コントロール権がそ の機器に渡ります。これを「パス・コントロール」と呼びます。

アクティブ・コントローラが持っているコントロール権は，システム・コン トローラがIFC インタフェース・メッセージを発行すると，システム・コン トローラに戻ります。

－インタフェース・メッセージに対する応答

この項で説明するインタフェース・メッセージに対する本器の応答は，IEEE規格488．1－1978で定義されています。

インタフェース・メッセージの本器への送り方は，使用するコントローラの取扱説明書を参照して下さい。

－インタフェース・クリア（IFC）

このメッセージは，本器へ直接信号線で送られてきます。
このメッセージによって本器はGPIBバスの動作を停止します。すべての入／出力を停止しますが，入出力バッファはクリアされません（クリアは DCLで実行される）。このとき本器がアクティブ・コントローラに指定されている場合，GPIBバスのコントロール権は解除され，システム・コントローラがコ ントロール権を得ます。
－リモート・イネーブル（REN）
このメッセージは，本器へ直接信号線で送られてきます。
このメッセージが真のとき，本器がリスナに指定されるとリモート状態にな ります。この状態はGTL を受けとるか，REN が偽になるか，またはLOCAL キ ーを押すまで続きます。本器は，ローカル状態のとき，すべての受信データ を無視します。
リモート状態のとき，LOCAL キーを除くすべてのキー入力を無視します。 ローカル・ロック・アウト状態（LL0：8－8ページを参照）のとき，すべての キー入力を無視します。
－シリアル・ポール・イネーブル（SPE）
本器はこのメッセージを外部から受信すると，シリアル・ポール・モードに なります。このモードでは，トーカに指定されると通常のメッセージではな くステータス・バイトを送信します。このモードはシリアル・ポール・ディ セーブル（SPD）メッセージを受信するか，IFC メッセージを受信するまで続 きます。

本器がサービス・リクエスト（SRQ）メッセージをコントローラに送信してい るときには，応答データのbit6（RQS bit）が 1（TRUE）になります。送信が終了後，RQS bit は O（FALSE）になります。 サービス・リクエスト（SRQ）メッセージは，直接信号線で送ります。

2．GPIBバスの機能

デバイス・クリア（DCL）
本器は DCLを受け取ったときに，以下のことを実行します。

- 入力バッファと出力バッファのクリア
- 構文解析部，実行コントロール部，応答データ生成部のリセット
- 次に実行するリモート・コマンドを妨げる全コマンドのキャンセル
- 他のパラメータを待つため一時停止されているコマンドのキャンセル

以下のことは実行しません。

- 本器に設定または格納されているデータの変更
- 正面パネル操作の中断
- 実行中の本器の動作への影響や中断
- MAV を除くステータス・バイトの変更（MAV は出力バッファのクリアの結果として 0 になる）

セレクテッド』デバイス』クリア（SDC）

DCL と同一の動作を行います。ただし，SDC は本器がリスナの場合だけ実行 されます。その他の場合は無視されます。

－ゴー・トゥ・ローカル（GTL）

このメッセージは，本器をローカル状態にします。ローカル状態になると，正面パネル操作がすべて有効になります。
－ローカル・ロック・アウト（LLO）
このメッセージは，本器をローカル・ロック・アウト状態にします。この状態で本器がリモート状態になると，正面パネル操作はすべて禁止されます（通常のリモート状態では，LOCAL キーで正面パネル操作ができる）。

このとき本器をローカル状態にする方法は，次の3通りあります。

- GTL メッセージを本器に送る
- RENメッセージを偽にする（このときローカル・ロック・アウト状態も解除される）
－電源を再投入する

－ティク・コントロール（TCT）

本器がト一力に指示されているとき，このメッセージを受けとると，パス・ コントロールされ，アクティブ・コントローラになります。IFCメッセージ の受信で本器はアドッレサブル・モードに戻ります。

本器は，コントローラやその他の機器からGPIBバスを通じてプログラム・メ ッセージを受け取り，応答データを発生します。プログラム・メッセージに は，コマンド，クエリ（応答データを問い合わせるコマンドのことを，特に「クエリ」と呼ぶ），データが含まれています。それらのデータのやりとり には手順があります。この項ではその手順について説明します。

－GPIB各種バッファ

本器にはバッファが 3 つあります。

○入カバッファ
コマンド解析をするために一時的にデータを貯めておくバッファです。
（1024バイトの長さをもちますが，それ以上の入力は無視されます。）

入力バッファのクリア方法は，2通りあります。

－電源投入

－DCL または SDCの実行

○出カバッファ

コントローラからデータを読まれるまでデータを貯めておくバッファです。 （1024バイトの長さをもつ）

出力バッファのクリア方法は，2通りあります。

－電源投入

－DCL または SDCの実行

2．GPIBバスの機能
－メッセージ交換
他のコントローラや機器がメッセージを本器から受信するときに特に重要な項目を，以下に示します。
－クエリの受信によって応答データを生成する
○パーサー
入力バッファから受信した順序通りにコマンド・メッセージを受け取り，構文解析を実行し，受け取ったコマンドがどんな内容の実行を行うのかを決定 します。

○応答データ生成

本器はパーサーがクエリを実行すると，その応答としてデータを出力バッフ ァ上に生成します（つまりデータを出力するにはその直前に必ずクエリを送 る必要がある）。

3．コマンド文法

－ママンド文法
コマンド文法は，以下のフォーマットで定義されています。

$$
\text { ヘッダ } \rightarrow \text { スペース(空白文字) } \Rightarrow \text { データ }
$$

洼 \Rightarrow は繰り返しを意味します。

ヘッダ
ヘッダは，下記の共通コマンド・ヘッダと単純ヘッダがあります。
共通コマンド・ヘッダは，ニーモニックの先頭にアスタリスク（＊）を付けた ものです。
単純ヘッダは，階層構造を持たない，機能的に独立した命令です。
ヘッダの直後に？を付けるとクエリ・コマンドになります。
－スペース（空白文字）
1 文字分以上のスペースが可能です。（スペースを省略しても構いません。）
－データ
コマンドが複数のデータを必要とするときは，データをカンマ（，）で区切っ て複数並ベます。カンマ（，）の前後にスペース（空白文字）を入れても構い ません。

データ・タイプの詳細については，データ・フォーマット（8－12ページ）を参照して下さい。

－複数のコマンドの記述

本器は，複数のコマンドをセミコロン（；）で区切って 1 行で記述することが可能です。

3．コマンド文法
－データ・フォーマット本器は，ここで示すデータ・タイプをデータの入出力で使用します。

－数値データ

数値データには次の 3 つのフォーマットがあり，本器に対する数値の入力で は，どれを用いても構いません。また，コマンドによっては入力時に単位を付けられます。単位に関しては，8－13ページを参照して下さい。
－整数型：NR1フォーマット

$$
[\text { 符号 }] \rightarrow \text { 数字 } \Rightarrow
$$

－固定小数点型 ：NR2フォーマット

$$
[\text { 符号 }] \rightarrow \text { 数字 } \Rightarrow \rightarrow \square \rightarrow \text { 数字 } \Rightarrow
$$

－浮動小数点型：NR3フォーマット

－単位

使用可能な単位の一覧を示します。

単位		
GZ	10^{9}	意味
MZ	10^{6}	周波数
KZ	周波数	
HZ	10^{3}	周波数
MV	10^{0}	周波数
MW	10^{-3}	電圧
DB	10^{-3}	電力
MA	10^{0}	dB関連
SC	10^{-3}	電流
MS	10^{0}	秒
US	10^{-3}	秒
	10^{-6}	秒

3．コマンド文法

MEMO

4．ステータス・バイト

本器ではIEEE規格488．2－1987に適合した階層化されたステータス・レジスタ構造をもち，機器の様々な状態をコントローラへ送信できます。本章ではこのステータス・バイトの動作モデルと， イベントの割当を説明します。

－ステータス・レジスタの構造

本器は，IEEE規格488．2－1987で定義されたステータス・レジスタのモデルを採用しており，コンディション・レジスタ，イベント・レジスタ，イネーブ ル・レジスタから構成されています。

○コンディション・レジスタ
コンディションレジスタは，機器のステータスを常に監視しています。つま り，このレジスタには常に最新の機器のステータスが保持されています。 ただし，このレジスタは内部情報として保持していますので，データの読み書きはできません。

4．ステータス・バイト

○イベント・レジスタ
イベント・レジスタは，コンディション・レジスタからのステータスをラッ チして保持します（変化を保持する場合もある）。このレジスタがセットさ れると，クエリで読み出されるか，＊CLSでクリアされるまでセットされたま まです。
このレジスタにデータを書き込むことはできません。
○イネーブル・レジスタ
「ネーブル・レジスタは，イベント・レジスタのどのビットを有効なステー タスとしてサマリを生成するのか指定します。イネーブル・レジスタはイベ ント・レジスタとANDをとられ，その結果のORがサマリとして生成されます。 サマリは次のステータス・レジスタに書き込まれます。
このレジスタはデータを書き込めます。

ススータス・レジスタの種類
本器のステータス・レジスタは，以下の 3 種類があります。
－ステータス・バイト・レジスタ
－スタンダード・イベント・レジスタ
－スタンダード・オペレーション・ステータス・レジスタ

4．スデータス・バィト

本器のステータス・レジスタの配置を，以下に示します。

各イベント・レジスタには，どのビットを有効にするかを決めるイネーブル －レジスタがあります。イネーブル・レジスタは，対応するビットを10進値 で設定します。

－スタンダード・イベント・ステータス・イネーブル・レジスタのセット：＊ESE
－オペレーション・ステータス・依ーブル・V゙シスタのセット ：OPR
（例）オペレーション・ステータス・レジスタのMeasuring ビットのみを有効にします。
オペレーション・ステータス・レジスタのMeasuring ビットが1 にセ ットされると，ステータス・バイト・レジスタのOPR ビットが1 にセ ットされます。

PRINT＠ 8 ；＂OPR16＂（N88BASIC のプログラム例）
OUTPUT 708 ；＂OPR16＂（HP200，300シリーズのプログラム例）
（例）ステータス・バイト・レジスタの0PR（Operation Status Register の サマリ）ビットとESB（Event Status Register のサマリ）ビットを有効にします。
OPR ビットまたはESB ビットが1 にセットされると，ステータス・バ イト・レジスタのMSS ビットが1 にセットされます。

PRINT＠ $8 ; " * S R E 160 "$（N88BASIC のプログラム例）
OUTPUT 708 ；＂＊SRE160＂（HP200，300シリーズのプログラム例）

4．ステータス：バイト
葍スタンダード・オペレーション・ステータス・レジスタ
－イベント・レジスタ
スタンダード・オペレーション・ステータスのイベント・レジスタは，対応 するコンディション・レジスタが $1 \rightarrow 0$ へ変化するときをラッチしています。 スタンダード・オペレーション・ステータスのイベント・レジスタの割り当 てを，以下に示します。

bit		説明
15		－常に0
14	Program running	－内蔵BASIC 言語が停止すると 1 にセッ トされる
$13 \sim 10$		－常に0
9	Printing	－プリンタ出力終了時に1にセットされ る
8	Averaging	－アベレージ終了時に1 にセットされる
$7 \sim 5$		－常に0
4	Measuring	－シーケンス測定終了時に1 にセットさ れる
3	Sweeping	－掃引終了時に1 にセットされる
$2 \sim 1$		－常に0
0	Calibrating	補正データ取得終了時に1 にセットさ れる

ステータス・バイト・レジスタは，ステータス・レジスタ（8－15ページ）か らの情報を要約しています。また，このステータス・バイト・レジスタのサ マリガサービス・リクエストとしてコントローラに送信されます。そのため， ステータス・バイト・レジスタは，ステータス・レジスタ構造とは若干違っ た動作を行います。この節ではステータス・バイト・レジスタに関して説明 をします。

ステータス・バイト・レジスタの構造を，以下に示します。

このステータス・バイト・レジスタは，以下の 3 点を除くとステータス・レ ジスタ構造（8－15ページ）に従います。
（1）ステータス・バイト・レジスタのサマリが，ステータス・バイト・レジス夕の bit6 に書き込まれます。
（2）イネーブル・レジスタの bit6 は常に有効で変更できません。
（3）ステータス・バイト・レジスタのbit6（MSS）が，サービス・リクエスト要求のRQS を書き込みます。

このレジスタがコントローラからのシリアル・ポールに対して応答します。 シリアル・ポールに対して応答するときには，ステータス・バイト・レジス夕のbit0～5，bit7およびRQS が読み出され，その後にRQS は0 にリセット されます。その他のビットはそれぞれの要因が 0になるまでクリアされませ ん。

ステータス・バイト・レジスタ，RQS ，MSS は，＂＊CLS＂，＂S2＂を実行すると クリアできます。それにともなって，SRQ ラインも偽になります。

4．スデータス・バイト
ステータス・バイト・レジスタの各ビットの意味を，以下に示します。

bit		説明
7	OPR	OPR は，スタンダード・オペンーション・ステータス －レジスタのサマリである
6	MSS	RQS は，ステータス・バイト・レジスタのMSSが 1に なったときTRUEになるが，そのMSS はすべてのステー タス・データ構造のサマリ・ビットになっている －MSS は，シリアル・ポールでは読めない（ただし，RQS が1 のときは MSSが1 であることがわかる） －MSS を読むには，共通コマンド＊STB？を用いる ＊STB？ではステータス・バイト・レジスタのbit0～5， bit7およびMSS が読み出される この場合ステータス・バイト・レジスタとMSS はクリ アされない MSS は，ステータス・レジスタ構造のすべてのマスク されていない要因がクリアされるまで0 にならない
5	ESB	－ESB は，スタンダード・イベント・レジスタのサマリ である
4	MAV	- 出力バッファの要約ビット - 本器では，対応しておりません。
$3 \sim 1$		－常に0
0	UCAL	－掃引が早すぎて信号のレベルに誤差が生じる場合 1 にセ ットされる

園スタンダード・イベント・レジスタ
スタンダード・イベント・レジスタの割り当てを，以下に示します。

bit		説明
7	Power on	－電源投入で1になる
6		－常に0
5	Command Error	パーサーが文法エラーを見つけたときに 1 にセットされる
4	Execution Error	GPIBコマンドとして受け取った命令の実行を何らかの理由（パラメータが範囲外 など）で失敗すると 1 にセットされる
3	Device Dependent Error	－Command Error ，Execution Error ， Query Error 以外のエラーが発生したと き 1 にセットされる
2	Query Error	－コントローラが本器からデータを読み出 そうとしたときに，データが存在しない またはデータが消失していると 1 にセッ トされる
1	Request Control	本器がアクティブ・コントローラになる必要があるときに 1にセットされる
0	Operation Complete	－本器では，対応しておりません。

5．GPIBコード一覧

【表に関する注意】

－リスナ・コード欄の＊は，コードに続いて数値データの入力を必要とするファンクショ ンであることを表します。

- 出力フォーマット欄の十は，複数個のデータを出力することを表します。
- 出力フォーマット欄のON／OFFおよびAUTO／MANUAL は，それぞれ1／0を出力します。
- －は不適なものを表します。
- 出力フォーマット欄の周波数単位は Hz ，時間単位はsec で出力します。また，レベル単位は設定されている表示単位で出力します。

ファンクション		$\begin{aligned} & \text { リスナ } \\ & \text { コード } \end{aligned}$	トーカ・リクエスト		備考	
		コード	出力フォーマット			
周波数			CF＊	CF？	周波数	
	$\begin{aligned} & \text { CFステップ・サイズ } \\ & \text { CFステップAUT0 } \end{aligned}$	$\begin{aligned} & \mathrm{CS} * \\ & \mathrm{CA} \end{aligned}$	$\begin{aligned} & \text { CS? } \\ & \text { CA? } \end{aligned}$	周波数 AUTO／MANUAL		
	周波数オソセット・サイス 周波数才フセット 0 N 周波数オフセット OFF	$\begin{aligned} & \text { FO * } \\ & \text { FON * } \\ & \text { FOF } \end{aligned}$	F0？	周波数		
	周波数スパ）	SP＊	SP？	周波数		
	フル・スパン	FS	－	－		
	ゼロ・スパン	ZS	－	－		
	ス夕ート周波数爫，	FA＊	FA？	周波数		
		FB＊	FB？	周波数		
	シーサ快態 内部ミキサ 外部ミキサ	MXI MXE	MXR？	内部（0）／外部（1）		
	$\begin{aligned} & \text { ポシテテイプ・ハイアス } \\ & \text { 初テイプ・ハイアス } \end{aligned}$	$\begin{aligned} & \text { MXP * } \\ & \text { MXN * } \end{aligned}$	$\begin{aligned} & \text { MXP? } \\ & \text { MXN? } \end{aligned}$	レベル レベル		

ファンクション		$\begin{aligned} & \text { リスナ } \\ & \text { コード } \end{aligned}$	トーカ・リクエスト		備考	
		コード	出力フォーマット			
$\begin{aligned} & \text { 周 } \\ & \text { 波 } \\ & \text { 数 } \end{aligned}$	バンドN		BND＊	BND？	整数	
	バンドロック	－	BNDLC？	－		
	バンドロック ON	BNDLC ON	－－	－		
	バンドロック OFF	BNDLC OFF	－	－		
	Signal Ident	－	SIGID ？	ON／OFF		
	Signal Ident ON	SIGID ON	－	－		
	Signal Ident OFF	SIGID OFF	－	－		
	Avg．Loss $\ddagger-{ }^{\text {P }}$	AGL＊	AGL？	レベル		
	Avg．Loss 0 N	AGL ON	－－	－		
	Avg．Loss OFF	AGL OFF	－	－		
	Loss vs．Freqモード	－	LVF？	ON／OFF		
	Loss vs．Freq ON	LVF ON	－	－		
	Loss vs．Freq 0FF	LVF OFF	－	－		
	Loss vs．Freq入力	LVFIN＊注）	－	－	＊F F ，L，A	
	Loss vs．Freq消去	LVFDEL	－	－		
	ブリビ					
	オート・ピ－キキング	PPA	－	－		
	マニュアル・ピーキング	PPM＊	PPM？	整数		
		RL＊	RL？	レベル		
	$\mathrm{XdB} / \mathrm{div}$	DD＊	DD？	0： $10 \mathrm{~dB} /$		
				1： $5 \mathrm{~dB} /$		
				2： $2 \mathrm{~dB} /$		
				3： $1 \mathrm{~dB} /$		
				4： $0.5 \mathrm{~dB} /$		
	リニア倍率	－	LN？	$0: \times 1$		
				1：$\times 2$		
				$2: \times 5$		
				$3: \times 10$		

注）LVFIN は，このコードの後にテーブル・データを設定します。テーブル・データは，周波数， レベル，バイアスで構成されます。

5．GPIBコードー筧

ファンクション		$\begin{aligned} & \text { リスナ } \\ & \text { コード } \end{aligned}$	トーカ・リクエスト		備考	
		コード	出力フォーマット			
	掃引きモート $\begin{array}{ll} \text { ウィンドウ } & \text { ON } \\ & \text { OFF } \end{array}$ ノーマル シングル $\begin{aligned} & \text { リセット\&スタート } \\ & \text { ティクロイーナ } \end{aligned}$ （Single 掃引動作）		WDOSWP 0N WDOSWP OFF CONTS SN SNGLS SI SR TS	SWM？		
	Gate Position Gate Width	GTPOS＊ GTWID＊	GTPOS？ GTWID？	時間データ時間データ		
	Gated SWP 0 N OFF	GTSWP ON GTSWP OFF	GTSWP？	ON／0FF		
	Gate Source EXT Gate in EXT Trigger	GTSRC GT GTSRC EXT		1 ：EXT Gate in 2 ：EXT Trigger		
	Gate Source Slope＋	$\begin{aligned} & \text { GTSLP+ } \\ & \text { GTSLP- } \end{aligned}$	-	$-$		
	$\text { トリガ・も }=\text { ト }$		TM？	$\begin{aligned} & 0: \text { FREE RUN } \\ & 1: \\ & 2: \text { LINE } \\ & 2: \\ & 5: \text { 外部 } \end{aligned}$		
	FREE RUN	TM FREE FR		$-$		
	LINE	$\begin{aligned} & \text { TM Line } \\ & \text { LI } \end{aligned}$		$\begin{aligned} & - \\ & - \end{aligned}$		

5．GPIBコード一筧

ファンクション		$\begin{aligned} & \text { リスナ } \\ & \text { コード } \end{aligned}$	ト一カ・リクエスト		備考	
		コード	出力フォーマット			
	VIdE0		VI	－	－	
1	外部	TM EXT	－	－		
1		EX	－	－		
－	トリガ・スロープ＋	TRIGSLP +	－	－		
ב		TRIGSLP－	－	－		
デ	トリガ・レベル	TR＊	TR？	－		
シ	SWP ．	SW＊	SW？	時間		
ョ		ST＊	ST？	時間		
	SWP AUTO	AS	AS？	AUT0／MANUAL		
バ	RBW RBW AU＂T0	$\begin{array}{\|l\|} \hline \mathrm{RB} \\ \mathrm{BA} \end{array}$	$\begin{aligned} & \text { RB? } \\ & \text { BA? } \end{aligned}$	周波数 AUTO／MANUAL		
	$\begin{aligned} & \text { RBW : SPAN } \\ & \text { RBW : SPAN 0N } \\ & \text { RBW : SPAN default } \end{aligned}$	CORS＊ CORS ON＊ CORS OFF	CORS?	比率		
	VBW VBW AUT0	$\begin{array}{\|l\|} \hline V B * \\ V A \end{array}$	$\begin{aligned} & \text { VB? } \\ & \text { VA? } \end{aligned}$	周波数 AU＇TO／MANUAL		
	$\begin{aligned} & \text { VBW : RBW } \\ & \text { VBW : RBW ON } \\ & \text { VBW : RBW default } \end{aligned}$	COVR＊ COVR ON＊ COVR OFF	COVR？	比率		
	Couple All AUT0	AL	AL？	AUTO／MANUAL		

5．GPIBコード一算

ファンクション		$\begin{aligned} & \text { リスナ } \\ & コ ー ト ゙ ~ \end{aligned}$	トーカ・リクエスト		備考	
		コード	出力フォーマット			
$\begin{aligned} & \text { ア } \\ & \cdots \\ & \cdots \\ & \text { テ } \\ & \text { ネ } \\ & 1 \\ & \text { 夕 } \end{aligned}$	AII ATT AUT0		$\begin{aligned} & \text { AT * } \\ & \text { AA } \end{aligned}$	$\begin{aligned} & \text { AT? } \\ & \text { AA? } \end{aligned}$	レベル AUTO／MANUAL	
	MIN．ATT MIN．ATT ON MIN．ATT default	ATMIN＊ ATMIN ON＊ ATMIN OFF	ATMIN？ －	レベル		
$\begin{aligned} & \text { ト } \\ & \nu \\ & 1 \\ & \text { z } \end{aligned}$	$H V-2 A$ A write A view A blank	AW AV $A B$	TA？	（下位バイト） 0 ：write 1：view 2：blank $3: A-D L \rightarrow A$ $4: A-B \rightarrow A$ $5: \mathrm{B}-\mathrm{A} \rightarrow \mathrm{A}$ （上位バイト） 0 ：nothing 1：＋max hold 2 ：＋averaging $3:+m i n h o l d$		
	A max hold A min hold	AM AMIN	$-$	$\begin{aligned} & - \\ & - \end{aligned}$		
	A averaging start stop pause continue 1 time continue	AG＊ AGR AGS AGP AGC AG1 AG0	AG？ \qquad － － － －	整数 － － － － － －		
	トレースA のクリア	CWA	－	－		

5．GPIBコード一筧

ファンクション		$\begin{aligned} & \text { リスナ } \\ & \text { コード } \end{aligned}$	トーカ・リクエスト		備考	
		コード	出力フォーマット			
	$\begin{gathered} \text { Tace Math } \\ A \times C H B \\ A-B \rightarrow A \\ B-A \rightarrow A \\ A-D L \rightarrow A \end{gathered}$		$\begin{aligned} & \text { ACHB } \\ & \text { TR0 } \\ & \text { TR1 } \\ & \text { TR2 } \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	
$\begin{aligned} & \text { ト } \\ & \nu \\ & 1 \\ & \text { r } \end{aligned}$	$A \cup-a B$ B store B view B blank	BSTORE BV BB	TB？	（下位バイト） 1：view 2：blank （上位バイト） 0 ：nothing		
	測定ボイイヤ数 501 ポイント 1001ポイント	$\begin{aligned} & \text { TPS } \\ & \text { TPL } \end{aligned}$	-	-		
	ティTア3: ノーマル ポジティブ ネガティブ サンプル		DM？ DET？	$\begin{aligned} & 0: ~ ノ ー マ ル \\ & 1: ~: ~ ホ ゚ シ ゙ テ ィ フ ゙ ~ \\ & 2: ~ ネ カ ゙ テ ィ フ ゙ ~ \\ & 3: ~ サ ン フ ゚ ル ~ \end{aligned}$		

ファンクション		$\begin{aligned} & \text { リスナ } \\ & \text { コード } \end{aligned}$	トーカ・リクエスト		備考	
		コード	出力フォーマット			
リ	Q4．710 X 軸 ABS REL Y 軸 ABS REL		LIMPOS ABS LIMPOS REL LIMAPOS ABS LIMAPOS REL	LIMP0S？ LIMAPOS？	$\begin{aligned} & 0: \mathrm{ABS} \\ & 1: \mathrm{REL} \\ & 0: \mathrm{ABS} \\ & 1: \mathrm{REL} \end{aligned}$	
	$\begin{array}{ll} \text { リミットゥイン1 } & \text { ON } \\ & \text { OFF } \\ & \\ \text { リミットゥイイン1 } & \text { ON } \\ & \text { OFF } \end{array}$	LAN LAF LBN LBF	LMTA？ LMTB？	$\begin{aligned} & 0 \mathrm{~N} / 0 \mathrm{FF} \\ & 0 \mathrm{~N} / 0 \mathrm{FF} \end{aligned}$		
		LIMTYP FREQ LIMTYP TIME LMTAIN＊注） LMTADEL LMTBIN＊注） LMTBDEL LIMSFT＊ LIMASFT＊	LIMTYP？ LIMSFT？ LIMASFT？	0：FREQ 1：TIME 周波数または時間 レベル	$*=F, L$ $*=F, L$	
	Pass／Fall 判定判定結果？ 判定結果？（詳細）	- -	$\begin{aligned} & \text { PFJ? } \\ & \text { OPF? } \end{aligned}$	$\begin{aligned} & 0: \text { FAIL } \\ & 1:: \text { PASS } \\ & 0: \text { PASS } \\ & 1:: \text { UPPER } \\ & 2:: \text { LOWER } \\ & 3: \text { UPPER\&LOWER } \\ & 4: \text { ERROR } \end{aligned}$		

注）LMTAIN，LMTBINは，このコードの後にテーブル・デ－タを設定します。テーブル・データは周波数または時間とレベルで構成します。設定例はプログラム例のPC－6（8－47ページ）を参照して下さい。

5．GPIBコード一覧

ファンクション		$\begin{aligned} & \text { リスナ } \\ & \text { コード } \end{aligned}$	トーカ・リクエスト		備考	
		コード	出力フォーマット			
$\begin{aligned} & \text { リ } \\ & \text { ミ } \\ & \text { y } \\ & 卜 \\ & \text { - } \\ & \text { ラ } \\ & 1 \\ & ン \end{aligned}$	Fai1粃イント読み出し Upper 側 Lower 側			FPU？ FPL？	Fai1果イント数〈CR／FR＞＋周波数，以゙ル〈CR／LF〉 （ポイント数分繰り返し） Upper側と同じ	最大 256セット
$\begin{aligned} & \text { デ } \\ & 1 \\ & \text { ス } \\ & \text { プ } \\ & レ \\ & 1 \\ & 1 \\ & ラ \\ & 1 \\ & \text { ン } \end{aligned}$	$\text { f1201 } 1 \cdot 91$ ディス゚レイ・ライン ON OFF	DLN＊ DLF	DL?	レベル		
$\begin{aligned} & \text { マ } \\ & 1 \\ & \text { 力 } \end{aligned}$	マーカON マーカ周波数 マーカ・レベル周波数＋レベル	$\begin{aligned} & \text { MN * } \\ & \text { MKN } * \\ & \\ & - \\ & - \\ & - \\ & - \end{aligned}$	MN？ \qquad MF？ ML？ MFL？	0 ：マーカ・オフ 1：ノーマル・マーカ 2：ロマーカ周波数 レベル 周波数 レベル周波数＋レベル		
	ノーマル・マーカ	$\begin{aligned} & \text { MKN * } \\ & \text { MK * } \end{aligned}$	MK？	周波数		
	$\Delta \mathrm{v}-\sigma$ Fixed マーカ Fixed マーカ $0 N$ Fixed マーカ 0FF	$\begin{aligned} & \text { MKD * } \\ & \text { MT * } \\ & \quad- \\ & \text { FXN } \\ & \text { FXF } \end{aligned}$	MT？ FX？	周波数 0N／0FF		

5．GPIBコード一贅

ファンクション		$\begin{aligned} & \text { リスナ } \\ & \text { コード } \end{aligned}$	トーカ・リクエスト		備考	
		コード	出力フォーマット			
$\begin{gathered} \text { マ } \\ \text { i } \\ \text { 力 } \end{gathered}$	1／ ロマーカ 1／Δ マーカ $0 N$ 1／Δ マーカ OFF		REDLT ON REDLT OFF	REDLT？	演算値（注） －－ －	
	$\begin{aligned} & ッ タ+ル \cdot ト ラ ッ ク \\ & \text { シグナル・トラック ON } \\ & \text { シグナル・トラック OFF } \end{aligned}$	$\begin{aligned} & \text { SGN } \\ & \text { SGF } \end{aligned}$	SG？	ON/OFF		
	E－ク，サ－F	$\begin{aligned} & \text { MKPK } \\ & \text { PS } \end{aligned}$	$-$			
	NEXTピーク	MKPK NH NXP	－	－		
	NEXTピーク・レフト	MKPK NL NXL	－	－		
	NEXTピーク・ライト	MKPK NR NXR	－	－		
	MIN サーチ	MIS	－	－		
	NEXT MIN	NXM	－	－		
	連続ピーク？ 連続ピークON 連続ピーク0FF	$\begin{aligned} & \\ & \\ & \text { CPN } \\ & \text { CPF } \end{aligned}$	CP?	$0 \mathrm{~N} / \mathrm{OFF}$		
	ピーク範囲					
	ノーマル 上側 下側	PSN PSU PSL	$-$	$\begin{aligned} & - \\ & - \end{aligned}$		
	ピーク $\Delta \mathrm{Y}$ div	DY＊	DY？	実数（0．1～10．0）		

（注）演算値は，時間または周波数データとなります。

5．GPIBコード一覧

ファンクション		$\begin{aligned} & \text { リスナ } \\ & \text { コード } \end{aligned}$	トーカ・リクエスト		備考	
		コード	出力フォーマット			
$\left\lvert\, \begin{aligned} & \text { マ } \\ & 1 \\ & \text { 力 } \end{aligned}\right.$	マーカ表示 相対 絶対		$\begin{aligned} & \text { MDR } \\ & \text { MDA } \end{aligned}$	-	-	
	$\begin{aligned} & \text { マーカ移動 } \\ & \text { A トレース } \\ & \text { B トレース } \end{aligned}$	MKTRACE TRA MKTRACE TRB	MKTRACE？	$\begin{aligned} & 0: \text { ブランク } \\ & 1: \text { Aトレース } \\ & 2: ~ B ト レ ー ス ~ \end{aligned}$		
	マ－カロFF	$\begin{aligned} & \text { MKOFF } \\ & \text { MO } \end{aligned}$	$-$	-		
	$\begin{aligned} & \text { マルキ・マーカ } \\ & \text { マルチ・マーカ0N } \\ & \text { マルチ・マーカOFF } \end{aligned}$	$\begin{array}{\|l} \text { MLT } \\ \text { M0 } \end{array}$	MLT？	ON／OFF		
	アクテイナ・マーカの移動	$\begin{aligned} & \mathrm{MN} * \\ & \mathrm{MK} * \end{aligned}$	-	－	＊＝周波数	
	マルチ・マーカ No． 10 O	MLN1＊	－	－		
	マルチ・マーカ No． 2 ON	MLN2＊	－	－		
	0FF	MLF2	－	－		
	マルチ・マーカ No． 3 ON	MLN3＊	－	－		
		MLF3 MLN4＊	－	－		
	マルナ・マーカ No． 4 OF	MLF4	－	－		
	マルテ・マーカ No．5 ON	MLN5＊	－	－		
	OFF	MLF5	－	－		
	マルチ・マーカ No． 6 ON	MLN6＊	－	－		
	OFF	MLF6	－	－		
	マルチ・マーカ No． 7 ON	MLN7＊	－	－		
	OFF	MLF7	－	－		
	マルテ・マーカ No． 8 ON	MLN8＊	－	－		
	OFF	MLF8	－	－		
	マルチ・マーカ No． 9 ON	MLN9＊	－	－		
	OFF	MLF9	－	－		
	マルテ・マーカ No． 100 N	MLN10＊	－	－		
	OFF	MLF10	－	－		

5．GPIBコード一覧

5．GPIBコード一覧

ファンクション		$\begin{aligned} & \text { リスナ } \\ & \text { コード } \end{aligned}$	トーカ・リクエスト		備考	
		コード	出力フォーマット			
$\begin{aligned} & \text { マ } \\ & \text { l } \\ & \text { 力 } \end{aligned}$	MKR スデサプサイス					
	MKR ステッサ゚ AUT0	MPA	MPA？	AUTO／MANUAL		
	PEAK \rightarrow CF	PKCF	－	－		
	PEAK \rightarrow REF	PKRL	－	－		
	ab down X dB down 幅 $X \mathrm{~dB}$ down $X \mathrm{~dB}$ down left $X \mathrm{~dB}$ down right $X \mathrm{~dB}$ relative $X d B$ abs．left X dB abs．right X dB実行状態 連続dB down？ 連続dB down 0 N 連続dB down 0FF	$\begin{aligned} & \text { MKBW * } \\ & \text { XDB } \\ & \text { XDL } \\ & \text { XDR } \\ & \\ & \text { DCO } \\ & \\ & \text { DC1 } \\ & \text { DC2 } \\ & \\ & \hline \end{aligned}$	MKBW？ \qquad － － － － － DC？ CDB？ \qquad	0：相対 1：絶対（左側） 2 ：絶対（右側） OFF／ON		
$\begin{array}{\|c} \text { 計 } \\ \text { 測 } \\ \text { ウ } \\ \text { ィ } \\ \text { ン } \\ \text { ド } \\ \text { ウ } \end{array}$	計測ちィナトワ	-	$\begin{aligned} & \text { WD0? } \\ & \text { WN? } \end{aligned}$	$\begin{aligned} & 0 \mathrm{~N} / \mathrm{FFF} \\ & 0 \mathrm{~N} / \mathrm{FF} \end{aligned}$		
	$\begin{aligned} & \text { ウィンドウON } \\ & \text { ウィンドウOFF } \end{aligned}$	WDO ON WN WDO OFF WF	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	-		
	中心位置：X	WLX＊	WLX？	周波数		
	ウィンドウ幅	WDX＊	WDX？	周波数		
	Couple to Marker	CPLMK ON CPLMK OFF	CPLMK？	ON／OFF		

ファンクション		$\begin{aligned} & \text { リスナ } \\ & コ ー ト ゙ ~ \end{aligned}$	ト一カ・リクエスト		備考	
		コード	出力フォーマット			
			MLTSCR ZM MLTSCR FT MLTSCR RST ZMPOS＊ ZMWID＊ SCRSEL TRA SCRSEL TRB	ZMPOS？ ZWWID？	周波数または時間周波数または時間	
$\begin{aligned} & 1 \\ & 1 \\ & ン \\ & フ ゚ \\ & \cdots \\ & 1 \end{aligned}$	レベル補正 $\begin{gathered} 0 \mathrm{~N} \\ \mathrm{OFF} \\ \text { テーブル入力 } \\ \text { テーブル消去 } \end{gathered}$	CR 0 N CR OFF CRIN＊注） CRDEL	CR？ － － － －	$\begin{gathered} \text { ON/OFF } \\ - \\ - \\ - \\ - \end{gathered}$	＊$=$ F，L	
リ ב 1 ル	リー－ル	$\begin{aligned} & \text { RC/REG_nn/ } \\ & \text { RC/File 名/ } \end{aligned}$	-	-	File名は最大 8文字まで	
セ 1 ブ	セ－ワ	SV／REG＿nn／ SV／File 名／	-	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & \text { のnn は } \\ & 01 ~ 10 \end{aligned}$	
デ リ 1 1 ト	FW－	DEL／REG＿nn／ DEL／File名／	-	$-$		
		IP	－	－		
プ リ ン 夕	アリン3出階調モード階調なし 標準縮小	PRT GRY PRT MOL PRT MOS		$\begin{aligned} & - \\ & - \\ & - \end{aligned}$		

注）CRINは，このコードの後にテーブル・データを設定します。テーブル・データは周波数と レベルで構成されています。

5．GPIBコード一覧

ファンクション		$\begin{aligned} & \text { リスナ } \\ & \text { コード } \end{aligned}$	トーカ・リクエスト		備考	
		コード	出力フォーマット			
$\begin{aligned} & \text { プ } \\ & \text { リ } \\ & \text { シ } \\ & \text { タ } \end{aligned}$	サリンタ・コマンドの選択 ESC／P HP PCL 実行		PRTCMD ESC PRTCMD PCL HCOPY			
プ ロ \cdots 夕	プロッタ出力 プロット対象 全情報 波形のみ 分割サイズ 1分割 2分割 4分割 プロット位置 中央 左 右 左上 右上 左下 右下 プロット位置移動 自動 手動 アドレス・モード トーク・オンリ アドレス指定 プロット実行	PLALL PLTRACE PLPIC1 PLPIC2 PLPIC4 PLMID PLLEFT PLRIGHT PLUPLEFT PLupright PLLOWLEFT PLLOWRIGHT PLAUT0 PLMAN PLTALK ONLY PLTALK ADRS PLOT HCOPY OPTPLOT			1分割モー㫟切り換构未す。 2分割モー㫟切り換かのます。 4分割モー院切り換かのます。 トーカハリスナ・アト以指定をコント吅－ラ行行う必要数 OPT15からの 加ット実行	

5．GPIBコード一䈭

	ファンクション	$\begin{aligned} & \text { リスナ } \\ & \text { コード } \end{aligned}$	トーカ・リクエスト		備考
			コード	出力フォーマット	
$\begin{aligned} & \text { ビ } \\ & \cdots \\ & \text { ト } \\ & マ \\ & \cdots \\ & \text { プ } \\ & \cdot \\ & フ \\ & ァ \\ & 1 \\ & ル \end{aligned}$	$\begin{aligned} & \text { イメージ・モード } \\ & \text { カラー } \\ & \text { 階調付き } \\ & \text { 白黑 } \\ & \text { RLE 圧縮 } \\ & \text { なし } \\ & \text { 付き } \\ & \text { ファイルNo. } \end{aligned}$ 実行	hCIMAG COL HCIMAG GRY HCIMAG MON HCCMPRS OFF HCCMPRS ON HCFILE＊ HCOPY		－	＊：000～ 999まてい 3 桁0）整数
$\begin{aligned} & \text { ハ } \\ & 1 \\ & \text { ド } \\ & \beth \\ & ヒ^{\circ} \\ & 1 \\ & \text { • } \\ & \beth \\ & ン \\ & \text { ト } \\ & \text { 口 } \\ & 1 \\ & \text { ル } \end{aligned}$	$\begin{aligned} & \text { デバイスの選択 } \\ & \text { プリンタ } \\ & \text { プロッタ } \\ & \text { ファイル A } \\ & \\ & \text { ファイル B } \\ & \\ & \text { ハードコピー実行 } \end{aligned}$	HCDEV PRT HCDEV PLT HCDEV MA HCDEV MB HCOPY	－	$\begin{aligned} & - \\ & - \end{aligned}$	MA： 〈䚾・カート。 トライブA MB： メモリ・カート・ トライプロ

5．GPIBコード一覧

ファンクション		$\begin{aligned} & \text { リスナ } \\ & \text { コード } \end{aligned}$	トーカ・リクエスト		備考	
		コード	出力フォーマット			
ラ ベ ル	フベル $\text { ラベル } 0 N$ ラベル消去		LON /*** / LOF	$\begin{array}{rr}\text { LB？} & \\ \\ - \\ - \\ & -\end{array}$	文字列	最大 30 字 で囲み文字入力注）表示 できない文字 で終了
ソ7$卜$－¢1	テータスカ関係 $0 \sim 9$ －（小数点）	$0 \sim 9$	-	-		
	GHz MHz kHz Hz mV mW dB関係 mA 秒 ミリ秒 μ 秒 ENTER	GZ MZ KZ HZ MV MW DB MA SC MS US ENT	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$		
			TAA？ TBA？		$\begin{aligned} & \text { 1戞仆分 } \\ & \text { E0I信号 } \end{aligned}$	
ト L 1	A 㕩出力（ASCII） （BINARY）	－				
ス	B 刊出力（ASCII）	－	TAB？	5 ハイト＋デ洺	1术イトト分	
$\stackrel{\text {－}}{\text { デ }}$	（BINARY）	TAA	TBB？		EOI信号	
1	A 刊入力（ASCII）		－－	－	1术イトト分	
	（BINARY）	TBA	－－	－	E0I信号	
	B 汼入力（ASCII） （BINARY）	TAB	-	－	1术イント分 E0I信号	

5．GPIBコード一筧

ファンクション		$\begin{aligned} & \text { リスナ } \\ & \text { コード } \end{aligned}$	トーカ・リクエスト		備考	
		コード	出力フォーマット			
$\begin{aligned} & \text { ス } \\ & \text { ぺ } \\ & ク \\ & 卜 \\ & ラ \\ & ラ \\ & ム \end{aligned}$	Power Meas		PWTM＊ PWAVG ON PWAVG OFF － PWTOTAL ON PWTOTAL OFF \qquad	PWTM？ PWAVG？ － － PWTOTAL？	整数（1～999） － － レベル － － レベル	
	チャンネル・パクー ON チャンネル・行 OFF キャリア・パクー ON	PWCH ON PWCH OFF PWCARR （PS）	PWCH？ PWCARR？ （MF？） （ML？）	レベル レベル周波数 レベル		
	カワソタ カウンタ値 カウンタON 分解能： 1 kHz ： 100 Hz ： 10 Hz ： 1 Hz カウンタ0FF	COUNT ON CNO CN1 CN2 CN3 COUNT OFF CNF	COUNT？ CNRES？（MF？）	OFF／ON 周波数 － － － － － －		
	YOPR:EーN 妨ン FON（AM 末规 FM） －サウンドON（AM） 妨ン HON（FM） 劣ンド0FF 音量 音量（最大） 音量（中間） 音量（最小）	SON SAM SFM SOF SDV＊ VX VD VN	SDMD？ SD？ － － － SDV？ $-$ －	$\begin{aligned} & 0: \text { OFF } \\ & 1: \\ & 2: \\ & 2: \\ & 0 N(A M) \\ & 0 N(F M) \end{aligned}$	1～8	

5．GPIBコード一筧

ファンクション		$\begin{aligned} & \text { リスナ } \\ & \text { コード } \end{aligned}$	トーカ・リクエスト		備考	
		コード	出力フォーマット			
ス	ポーズ時間 SQUELCH SQuELCH ON SQUELCH OFF		PU * SQE＊ SQE ON＊ SQE OFF	PU? SQE？	時間 レベル	
ク $卜$ $卜$ 今 ム	Nouse／Hz $\mathrm{dBm} / \mathrm{Hz} 0 \mathrm{~N}$ $\mathrm{dB} \mu \mathrm{V} / \sqrt{ } \mathrm{Hz} 0 \mathrm{~N}$ $\mathrm{dBc} / \mathrm{Hz}$ ON Noise／Hz OFF Noise／Hz値	NI＊ NIM NIU NIC NIF	NI？ NIRES？（ML？）	周波数 － － － レベル		
そ の 他	その他 Error Number出力 デリミタ CR LF 〈EOI〉 LF ＜EOI〉 CR LF LF〈EOI〉	DL0 DL1 DL2 DL3 DL4	ERRNO？ － － － －	整数	$\begin{aligned} & \text { 又ッセーシーシー覧 } \\ & \text { Iラ-番号参照 } \end{aligned}$	
	$\begin{aligned} & \text { サービス・リクエスト } \\ & \text { 割り込み0N } \\ & \text { 割り込み0FF } \\ & \text { スデタス・クリア } \\ & \text { サービス・リクエスト・ススク } \end{aligned}$	$\begin{aligned} & \text { S0 } \\ & \text { S1 } \\ & \text { S2 } \\ & \text { RQS * } \end{aligned}$	$\begin{array}{r} - \\ \text { RQS? } \end{array}$	SRQ ビットに相当する 10進数		
	機種タイプ 機種夕イ゚（文字列） レビジョンの出力	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	VER？ TYPE？ TYP？ REV？	$\begin{aligned} & \text { 文字列+デリミタ } \\ & \text { 文字列+デリミタ } \\ & \text { 文字列+デリミタ } \end{aligned}$		

5．GPIBコード一覧

ファンクション		$\begin{aligned} & \text { リスナ } \\ & \text { コード } \end{aligned}$	トーカ・リクエスト		備考	
			出力フォーマット			
$\begin{aligned} & そ \\ & \text { 〒 } \\ & \text { 他 } \end{aligned}$	基準信号源 （内部） （外部）		$\begin{aligned} & \mathrm{RFI} \\ & \mathrm{RFE} \end{aligned}$			
	CW－0BW OBW（execute） OBW \％ OBW avg times OBW avg times ON OBW avg times 0FF OBW set up（User） （Define） （Manual）	OBW OBW＊ AVGOBW＊ AVGOBW ON AVGOBW OFF OBWST USR OBWST DEF OBWST MNL	OBW？ AVG（DBW？	〈OBW\％，OBW値，FC〉 整数 － － － － －		
	$\begin{aligned} & \text { CW-ACP } \\ & \text { ACP(execute) } \\ & \text { ACP CS } \\ & \text { ACP BS } \end{aligned}$	ACP ADCH＊ ADBS＊	ACP?	$\langle 11, \mathrm{u} 1,12, \mathrm{u} 2,13, \mathrm{u} 3\rangle$ －	11～ u3［dB］	
	ACP set up（User）（Define） （Manual）ACPscreen（Full） （Sepa） ACP graph ON OFF	ACPST USR ACPST DEF ACPST MNL ACPSCR FULL ACPSCR SEPA ADG 0 N ADG 0FF		-		
	CW－HARM HARM（execute） HARM Fund HARM Number	HARM HRMFND＊ HRMNUM＊	HARU？ HRUFND？ HRYNUM？	$\begin{aligned} & \langle\mathrm{f} 1,11, \mathrm{f} 2,12, \ldots \\ & \mathrm{f} 10,110\rangle \end{aligned}$ 周波数 整数	f［Hz］ 1 ［レがル単位 f，lをなットとし 最大 10 セット 出力 セット数は HRMNUM？${ }^{0}$ 数	

ファンクション		$\begin{aligned} & \text { リスナ } \\ & \text { コード } \end{aligned}$	トーカ・リクエスト		備考	
		コード	出力フォーマット			
共通コママンド	機器IDの出力		－	＊IDN？	形名（文字列）， 機種夕付（文字列）， 0 ，ビジョン（文字列） （例：ADVANTEST， R3465，0，A01）	
	機器の初期化	＊RST	－	－		
	ステータス・ハイトと関連まュー の纱ア	＊CLS	－	－		
	$\begin{aligned} & \text { スタンタート・イハント・ステータス・• } \\ & \text { イネーブル・レ゙スタのアクセス } \end{aligned}$	＊ESE	＊ESE？	レ゙タタ内の各ビットに対応 する10進数		
	スタンタート・イベント・ステータス。 レ゙スタの読み出しと归ア	－	＊ESR？	レ゙スタ内の各ビットに対応 する10進数		
	サービス・リクエスト・イネーブル －レ゙スタ のアタセス	＊SRE	＊SRE？	レ゙タタ内の各ビットに対応 する10進数		
	ステータス・バト とMSSビット の読み出し	－	＊STB？	ステータス・ハイトの各ビットに対応する10進数		
	$\begin{aligned} & \text { ポレーション・ステータス・イネーブル・ } \\ & \text { に゙スタタアクセス } \end{aligned}$	OPR	OPR？	レ゙タタ内の各ビットに対応 する10進数		
	ポレーション・ステータス・レジスタの 読み出しと開	－	OPREVT？	レ゙タタ内の各ビットに対応 する 10 進数		

6．プログラム例

PC9801シリーズではN88BASIC，HP200，300シリーズではHP－BASICを使用しています。
PC9801シリーズのプログラム例（GPIBアドレス＝8）

例 PC－1 本器をマスタ・リセットし，中心周波数を 30 MHz にする

10	ISET IFC：ISET REN	，インターフェースタリア，リモートイネーブルを実行
20	PRINT＠8；＂IP＂	，マスタットリをを実行
30	PRINT＠8；＂CF30MZ＂	中心周波数を 30 MHz に設定
40	STOP	
50	END	

例 PC－2 スタート周波数を 300 kHz ，ストップ周波数を 800 kHz に設定し，周波数オフセット を 50 kHz 加える

10 ISET IFC：ISET REN
20 PRINT＠8；＂FA300KZ＂，スタート周波数を 300 kHz に設定
30 PRINT＠8；＂FB800KZ＂，ストッナ周波数を 800 kHz に設定
40 PRINT＠8；＂FON50KZ＂，周波数オフセットを50kHz に設定
50 STOP
60 END

例 PC－3 基準レベルを $87 \mathrm{~dB} \mu \mathrm{~V}$ ， $5 \mathrm{~dB} / \mathrm{div}$,RBW を 100 kHz にする
10 ISET IFC：ISET REN
20 PRINT＠8；＂UU RL87DB＂，REFVベル を87dB μV に設定
30 PRINT＠8；＂DD5DB＂，5dB／を設定
40 PRINT＠8；＂RB100KZ＂，RBW を 100 kHz に設定
50 STOP
60 END
例 PC－4 変数による数値の設定

```
10 ISET IFC:ISET REN
20 SPA=8:A=10:B=2:C=20
, 各変数に設定値を代入
30 PRINT @SPA;"CF",A,"MZ" , 中心周波数を 10MHz に設定
40 PRINT @SPA;"SP", B,"MZ" , 周波数スパ を2MHzに設定
50 PRINT @SPA;"AT", C,"DB" , ATT を20dBに設定
60 STOP
70 END
```

例 PC－5 レジスタ5 ヘ設定値のセーブおよびリコールを実行

```
    10 ISET IFC:ISET REN
    20 TITLES="R3272 SPECTRUM Analyzer" ', ラ^゙ル を定義
    30 PRINT @8;"CF30MZ SP1MZ DTP" , 各苁名 の設定
    40 PRINT @8;"LON/"+TITLE$+" /" , j^゙ル 0N
    50 PRINT @8;"SV/REG_05/" , V゙スタ5へセーブ
    60 PRINT @8;"CF1GZ SP200MZ" , 中心周波数, 周波数ス゚ソ の変更
    70 PRINT @8;"RC/REG-05/" ' Vジス夕5からリコーN
    80 STOP
    90 END
```

例PC－6 リミットライン1テーブルを入力し，0Nする

```
    10 ISET IFC:ISET REN
    20 PRINT @8;"IP"
    30 PRINT @8;"LMTADEL" , リミットイン1のデブルを消去
    40 PRINT @8;"UU" , 単位をdB }\mu\textrm{V}\mathrm{ に設定
    5 0
    60 PRINT @8;"LMTAIN 25MZ,49.5DB" , リミットライン1のデー夕を入力
    70 PRINT @8;"LMTAIN 35MZ,50.5DB"
    80 PRINT @8;"LMTAIN 35MZ, 51.5DB"
    90 PRINT @8;"LMTAIN 55MZ, 52.5DB"
100 PRINT @8;"LMTAIN 55MZ, 54.3DB"
110 PRINT @8;"LMTAIN 65MZ, 55.9DB"
120 PRINT @8;"LMTAIN 65MZ, 57.0DB"
130 PRINT @8;"LMTAIN 68MZ, 58.0DB"
140 PRINT @8;"LMTAIN 68MZ, 60.50B"
150 PRINT @8;"LMTAIN 75ML,63.0DB"
160 PRINT @8;"LMTAIN 75MZ,64.00B"
170 PRINT @8;"LMTAIN 82MZ,64.6DB"
180 PRINT @8;"LMTAIN 82MZ,64.7DB"
190
200 PRINT @8;"FA0MZ FB100MZ" , スタート周波数, ストッチ周波数を設定
210 PRINT @8;"LAN" , リミットライン l を0N
220 STOP
230 END
```

6．プログラム例

例 PC－7 GATED SWEEP 測定例

10	ISET IFC：ISET REN	インタコェース・少ア，师トト・依ーブルを実行
20	PRINT＠8；＂GTSRC GT＂	GATE信号源をEXT 信号にする
30	PRINT＠8；＂GTSLPt＂	EXT 信号の立下がりでトリガをかける
40	PRINT＠8；＂GTWID 10MS＂	GATE幅を10msにする
50	PRINT＠8；＂GTPOS 10US＂	
60	PRINT ©8；＂GTSWP 0N＂	GATE SWEEPをONにする
70	END	

HP200，300シリーズのプログラム例（GPIBアドレス＝1）
例 HP－1 本器をマスタ・リセットし，中心周波数を 30 MHz にする
10 OUTPUT 701；＂IP＂
20 OUTPUT 701；＂CF30MZ＂
30 END

例 HP－2 スタート周波数を 300 kHz ，ストップ周波数を 800 kHz に設定し，周波数オフセット を 50 kHz 加える

10 OUTPUT 701；＂FA300KZ＂
20 OUTPUT 701；＂FB800KZ＂
30 0UTPUT 701；＂FON50KZ＂
40 END

例 HP－3 基準レベルを－20dBm（5dB／div），分解能帯域幅を 100 kHz ，ディテクタモードをposi に設定する

10 OUTPUT 701；＂RL－20DB＂
20 0UTPUT 701；＂DD5DB＂
30 OUTPUT 701；＂RB100KZ＂
40 0UTPUT 701；＂DTP＂
50 END

例 HP－4 トリガモードをシングル，掃引時間を 2 秒に設定し，掃引のたびに最大レベルヘ マーカをのせる

10 OUTPUT 701；＂SI＂
20 0UTPUT 701；＂SW2SC＂
30 0UTPUT 701；＂SR＂！掃引の開始
40 WAIT 2.5
！掃引の終了を待つ（またはみービス・リクエストを使う）
50 OUTPUT 701；＂PS＂ ！マーカのピークサーチ
60 GOTO 30
70 STOP
80 END

例 HP－5 MAX HOLD（A）に設定する

OUTPUT 701；＂AM＂
！ダイレクトに設定する

例 HP－6 File アクセス関連
OUTPUT 701；＂RC／REG－05／＂！レジスタ5 をリコールする
OUTPUT 701；＂RC／A：\／SVRCL $\backslash /$ FILE－010．DAT／＂！カードからリコールする
OUTPUT 701；＂SV／REG＿02，PDC Measure／＂！タイトル付でセーブする

RC，DEL，SV コマンドでのファイル・アクセス方法は，同一形式です。 デバイス名を指定する場合は，必ずディレクトリ名を合んだフルパス名で指定して下さ い。

6．プログラム例

データ出力形式（トーカ）

測定データや設定状態などの内部データを出力させるには，＂xx？＂コマンド で出力させたいデータの指定をしておきます。そして本器がトーカになった ときに指定したデータを読み込みます。出力のフォーマットは，大きく分け ると下表のようになります。
最終データとなるデリミタは，5種類の指定ができます（GPIBコード一覧の その他を参照）。なお，一度設定した＂Xx？＂コマンドは変更があるまで有効 です。

	出力フォーマット
周波数系	\pm DDDDDDDDDDDDE \pm D CR LF
	$\uparrow \uparrow$ ¢
	$\begin{array}{llll}1 & 2 & 3\end{array}$
	－データサイズ（ $1 \sim 3)$ は最大 19 バイト，単位は Hz
	例）＂CF？＂を指定し，中心周波数を出力する場合等
レベル系	\pm DDDDDDDDE \pm D CR LF
	$\uparrow \quad \uparrow \quad \uparrow$
	$\begin{array}{llll}1 & 2 & 3\end{array}$
	－データサイズ（ $1 \sim 3)$ は最大19バイト，単位は各UNITに従う
	例）＂ML？＂を指定し，マーカ・レベルを出力する場合等

【補足】 1 ＝符号（正はスペース，負は一が入る）
2＝データ仮数部
$3=$ デー夕指数部
4＝デリミタ（初期設定時CR／LF，＂DLn＂コードで変更可能）

	出力フォーマット
時間系	$\begin{array}{cccc} \pm & \\ & & & \\ & \uparrow & \uparrow & \\ 1 & 2 & 3 & \uparrow \\ 1 & 3 & 4 \end{array}$ －データサイズ $(1 \sim 3)$ は最大 19 バイト，単位はsec
	例）＂SW？を指定し，掃引時間を出力する場合等
定数系	
	例）ON／OFF状態を出力またはアベレージ回数を出力する場合等

【補足】 1 符号（正はスペース，負は一が入る）
$2=$ データ仮数部
$3=$ データ指数部
$4=$ デリミタ（初期設定時CR／LF，＂DLn＂コードで変更可能）

6．プログラム例

PC9801シリーズのプログラム例（GPIBアドレス＝8）

結果例 MARKER LEVEL $=-16.22$
例 PC－9 中心周波数を出力する（文字変数）

```
10 ISET IFC:ISET REN
20 PRINT ©8;"CF?"
30 INPUT @8;CF\$ , 中心周波数の読み込み
40 PRINT CF\$ , ディス゚レイに結果を表示
50 STOP
60 END
```

結果例 $30.000 \mathrm{E}+6$

例 PC－10 レベルの表示単位およびレベルを出力する
10 ISET IFC：ISET REN
20 PRINT＠8；＂RL？＂
30 INPUT＠8；RE\＄，REF レベル の読み込み
40 PRINT＠8；＂UN？＂
50 INPUT＠8；UN ，V゙ル単位の読み込み
60 PRINT RE\＄，＂：＂，UN－ディズレイに結果を出力
70 STOP
80 END

結果例 0．0E $+0: 0$

例 PC－11 6dB downを実行後，その周波数としベルを出力する（複数個）

10	ISET IFC：ISET REN	
20	PRINT＠8；＂CF30MZ SP20MZ＂	中心周波数，周波数スパの設定
30	PRINT ©8；＂MKBW6DB PS XDB＂	6dB downを実行
40	PRINT ©8；＂MFL？＂	マーカ周波数とレベルを同時に読み込む
50	INPUT＠8；MF，ML	
60	PRINT＂MARKER FREQ＝＂；MF；＂	R LEVEL＝＂；ML
70	STOP	
80	END	
	結果例 MARKER FREQ $=40$	Marker Level＝ 1.16

例 PC－12 CW－OBWを実行し，演算結果を出力する

```
    10 ISET IFC:ISET REN
    20 PRINT @8;"CF30MZ" ' 各デー夕設定
    30 PRINT @8;"SP10MZ"
    40 PRINT @8;"MK30MZ"
    50 PRINT @8;"OBW" ' OBW を実行
    60 PRINT @8;"OBW?" , バ-センテーシ,占有帯域幅,搬送波周波数
    70 INPUT @8;PER, OBW,FC
    80 PRINT "OBW (";PER;"%) = ";OBW;" : Fc = ";FC
    90 STOP
    100 END
```

 結果例 \(0 B W(99 \%)=171000: ~ F C=2.503 E+07\)
 例 PC-13 信号の最大および第2, 3 ピークのレベル値を出力する

6．プログラム例

「トレース・データの入出力

画面上のトレース・データは周波数軸上で，1001ポイントまたは 501 ポイン トのデータで構成しています。このデータを入出力するには左（スタート周波数）から順に1001／501ポイント分のデータを転送します。各ポイントのレ ベル値は，1792～14592 の整数値で表わします。（ただし，スケールの枠か ら上方へはずれた波形については，14592を越えた値になります。）

トレース・データはASCII データと，バイナリ・データによる入出力の方法 があります。

表 8－1 トレース精度指定コード

GPIBコード	内容
TPS	測定ポイント数を501 に設定
TPL	測定ポイント数を 1001 に設定

6．プログラム例

PC9801シリーズのプログラム例（GPIBアドレス＝8）
例 PC－14 AメモリのデータをASCII で出力する

10	ISET IFC：ISET REN
20	DIM TR（1001）
30	PRINT＠8；＂DL0 DTG＂
40	PRINT＠8；＂TAA？＂

結果例 $\operatorname{Tr}(0)=5208 \operatorname{Tr}(1)=5210 \ldots \operatorname{Tr}(999)=5311 \operatorname{Tr}(1000)=5298$
例 PC－15 AメモリのデータをBINARYで出力する

10	ISET IFC：ISET REN	ツターフェースクリア，师トトイネーブルを実行
20	DIM TR（1001）	
30	PRINT ©8；＂DL2 DTG＂	初テイブテイデ多に設定
40	PRINT ©8；＂TBA？＂	A \times 珄binary出力を指定
50	WBYTE \＆H3F，\＆H5F，\＆H3E，\＆H48；	
60		8番にアドス指定する
70	FOR I $=0$ T0 1000	
80	RBYTE ；UP，L0	データの取込みを上位，下位ハイト毎に1001
90	$\operatorname{TR}(\mathrm{I})=\mathrm{UP} * 256+\mathrm{L} 0$	ポイント分繰り返す
100	PRINT I；＂＝＂；TR（I）	
110	NEXT I	
120	WBYTE \＆H3F，\＆H5F；	リスナトーカの解除
130	STOP	

結果例 $\operatorname{Tr}(0)=6312 \operatorname{Tr}(1)=6319 \ldots . \operatorname{Tr}(999)=6208 \operatorname{Tr}(1000)=6211$

6．プログラム例

```
例 PC-16 A メモリにデータをASCII で入力する
\begin{tabular}{|c|c|c|}
\hline 10 & ISET IFC：ISET REN & インターフェスタリア，リモートイネーブルを実行 \\
\hline 20 & \(\mathrm{A}=0: \mathrm{ST}=3.14 / 100\) & \\
\hline 30 & PRINT＠8；＂AB TAA＂ & A 珄リASCII 入力を指定 \\
\hline 40 & FOR I \(=0\) TO 1000 & \\
\hline 50 & \(N=\operatorname{INT}(\operatorname{SIN}(\mathrm{A}) * 5000)+5000\) & \\
\hline 60 & \(\mathrm{A}=\mathrm{A}+\mathrm{ST}\) & \\
\hline 70 & PRINT＠8；N & \\
\hline 80 & NEXT I & \\
\hline 90 & PRINT＠8；＂AV＂ & ＇A VIEW \\
\hline 100 & STOP & \\
\hline 110 & END & \\
\hline
\end{tabular}
```

例 PC－17 A メモリにデータをBINARYで入力する

```
10 ISET IFC:ISET REN ` ' インターフェスタリア, リモートイネーブルを実行
20 DIM DT(1001)
30 A=0:ST=3.14/100
40 PRINT @8;"AB CWA TBA" ' A人干少binary人力を指定
50 FOR I=0 T0 1000
60 DT(I)=INT(C0S (A)*5000) +5000
70 A=A ST
80 NEXT I
90 , リスナ解除, PC9801をト加3番に, 本器を
100 , リスナ8番にアトリス指定する
110 WBYTE &H3F, &H5F, &H5E, &H28;DT(0)¥256,DT%(0) MOD 256
120 FOR I=1 T0 999
130 WBYTE ; DT(I)¥256,DT(I) MOD 256`デタ夕を上位, 下位バイ卜毎に転送する
140 NEXT I
150 WBYTE ; DT(1000)¥256, DT(1000)M0D 256@`最終デー夕 とともに E0I信号を出す
160 PRINT @8;"AV"
170 STOP , A VIEW
1 8 0 ~ E N D
```

HP200，300シリーズのプログラム例（GPIBアドレス＝1）
例 HP－12 A メモリのデータをASCIIで出力する

10	DIM $\operatorname{Tr}(1000)$	！変数を1001個確保
20	0utput 701；＂Dl3＂	！デリミタをCR LFにする
30	OUTPUT 701；＂TAA？＂	！AメモリASCII指定
40	FOR I＝0 T0 1000	！データの取込みを1001回繰りかえす
50	ENTER 701； Tr（ I ）	$!$ ！
60	NEXT I	！
70	END	

結果例 $\operatorname{Tr}(0)=5208 \operatorname{Tr}(1)=5210 \ldots . \operatorname{Tr}(999)=5311 \operatorname{Tr}(1000)=5298$

例 HP－13 B メモリのデータをバイナリで出力する

10	DIM $\operatorname{Tr}(1000)$	！変数を1001個確保
20	OUTPUT 701；＂DL2＂	！デリミタをEOIにする
30	0UTPUT 701；＂TBB？＂	！B ${ }^{\text {a }}$（
	ENTER 701 USING ${ }^{\prime} \%$ ，W＂； $\operatorname{Tr}(*)$	！EOIがくるまでワード型変換してデー
	END	！夕を取り込む

結果例 $\operatorname{Tr}(0)=6312 \operatorname{Tr}(1)=6319 \ldots . \operatorname{Tr}(999)=6208 \operatorname{Tr}(1000)=6211$

データがASCII の場合は，入出力する回数は必ず1001回分の指定をして下さい。 またデータがバイナリの場合む，1001個のデータを確保し，デリミタは必ずE01指定を行って下さい。

6．プログラム例

例 HP－14 AメモリにデータをASCIIで入力する

10	INTEGER $\operatorname{Tr}(1000)$	！
20	OUTPUT 701 ；＂TAA＂	！AメモりASCII指定
30	FOR I $=0$ T0 1000	！ 1001 個確保されて変数 $T r$ の入力を 1001
40	OUTPUT $701 ; \operatorname{Tr}(\mathrm{I})$	！回繰り返す
50	NEXT I	
60	END	

隻 プログラム実行前にVIEWモードに設定する必要があります。実行後に再びVIEWキーを押すと入力した結果が確認できます。

例 HP－15 B メモリにデータをバイナリで入力する

10	INTEGER Tr（1000）	$!$
20	OUTPUT 701；＂TBB＂	！B メモリ・バイナリ指定
30	OUTPUT 701 USING＂\＃，W＂；Tr（＊），END	！1001個のデータをワードサイズ
40	END	！で入力し最終にEOIを付加す

プログラム実行前にVIEWモードに設定する必要があります。実行後に再びVIEWキーを押すと入力した結果が確認できます。

データがASCII の場合は，入出力する回数は必ず1001回分の指定をして下さい。 またデータがバイナリの場合も，1001個のデータを確保し，デリミタは必ずEOI指定を行って下さい。

ステータス・バイトを使用したプログラム例

PC9801シリーズのプログラム例（GP－IBアドレス＝8）

例 PC－18 シングル掃引を実行し，掃引の終了を待つ（SRQ信号を使用しない場合）

```
10 ISET IFC :ISET REN
20 SPA=8
30 PRINT @SPA;"SI"
40 PRINT @SPA;"OPR8"
50
6 0 ~ P R I N T ~ @ S P A ; " * C L S " ~
70 PRINT @SPA;"TS"
80 *L00P
90 PRINT @SPA;"*STB?" : INPUT @SPA;S ’ステータス•ハイトを読み込む
100 IF (S AND 128)=0 THEN GOTO *LOOP 'かN゚レ-ション•スデータス•ビット(掃引終了) が1 に
110 , セ外されるまで待つ
120 STOP
```

例 PC－19 CW－ACP測定を行い，測定終了後に結果を読み出す（SRQ信号を使用しない場合）

10 ISET IFC ：ISET REN
20 SPA＝8
30 PRINT＠SPA；＂ACPST MNL＂
40 PRINT＠SPA；＂CF1500MZ＂
50 PRINT＠SPA；＂SP250KZ＂
60 PRINT＠SPA；＂RB1KZ；VB3KZ＂
70 PRINT＠SPA；＂ST20SC＂
80 PRINT＠SPA；＂ADCH50KZ＂
90 PRINT＠SPA；＂ADBS21KZ＂
100 PRINT＠SPA；＂OPR16＂
110
120 PRINT＠SPA；＂＊CLS＂
130 PRINT＠SPA；＂ACP＂
140 ＊L00P
150 PRINT＠SPA；＂＊STB？＂：INPUT＠SPA；S
160 IF（ S AND 128）＝0 THEN GOTO＊LOOP
170 PRINT＠SPA；＂ACP？＂
180 INPUT＠SPA；L0，UP
190 PRINT＂－50K：＂；L0；＂，－50K：＂；UP
200 STOP
’IFC 信号を送信し，REN 信号を1 に設定
－GP－IB アドレス（8）を変数に設定
＇ACP 測定の条件を＇Manual＇に設定
’中心周波数を 1500 MHz に設定
’周波数スパンを 250 kHz に設定
，RBW：1kHz，VBW： 3 kHz に設定
’掃引時間を20秒に設定
－チャンネル・スペースを50kHz に設定
’帯域幅を21kHz に設定
－ポレーションン・ステータス・レ゙タタタのMeasuring ビットを

- 侪ーブルにする
- ステータス・バトトを放アする
’ACP 測定を開始
－ステータス・ハトトを読み込む
’ACP 測定終了を待つ
- ACP 測定結果の出力要求
- ACP 測定結果を読み込む
’測定結果を表示

6．プログラム例

```
例 PC-20 シングル掃引の終了ごとにピーク周波数, レベルを読み込む
    (SRQ信号を使用する場合)
```

10 ISET IFC ：ISET REN
$20 \mathrm{SPA}=8$
30 PRINT＠SPA；＂SI＂
40 ON SRQ GOSUB＊SSRQ
50 PRINT＠SPA；＂＊CLS＂
60 PRINT＠SPA；＂OPR8＂

70 PRINT＠SPA；＂＊SRE128＂

80 PRINT＠SPA；＂SO＂
$90 *$ LOOP
100 SEND＝0 ，掃引終了フラグ を归
110 PRINT＠SPA；＂TS＂
120 SRQ ON
130 ＊WINT
140 IF SEND $=0$ THEN GOTO＊WINT
150 PRINT＠SPA；＂PS＂
160 PRINT＠SPA；＂MFL？＂
170 INPUT＠SPA；MF，ML
180 PRINT＂Peak Freq：＂；MF；＂，Peak Level：＂；ML＇読み込んだデータを表示
190 GOTO＊LOOP \quad 掃引を繰り返す
200 ＂
$210 *$ SSRQ
220 POLL SPA，S
230 SEND＝1
240 RETURN
250 ＇
260 END
’IFC 信号を送信し，REN 信号を1 に設定
＇GP－IB アドレス（8）を変数に設定

- シングル掃引モードに設定
- SRQ 割り込み処理ルーチンを定義
- スデータス・バイトを师する
－ホペレーション・ステータス・レジスタのSweep－end ビットを偣ブルにする
－ステータス・バイト のOperation Statusビットを イネーブルにする
－SRQ 信号送出モードを指定
，掃引を開始
’PCのSRQ 割り込みを竍ーブル にする
- SRQ 割り込みが発生するまで待つ
- ピークサーチを実行
- マーカ・データ の出力要求
- ビータ 周波数，レ゚ルを読み込む
，SRQ 割込処理川ーチン
－スデータス・ハイトを読み込む
，掃引終了フラダを1 にセット
－タインルーチンに復帰

```
HP200， 300 シリーズのプログラム例（GP－IBアドレス＝8）
```

例 HP－16 シングル掃引を実行し，掃引の終了を待つ（SRQ信号を使用しない場合）

```
10 Spa=708
!GP-IB アl゙スス(8)を変数に設定
20 OUTPUT Spa;"SI"
! シングル掃引ほードに設定
30 OUTPUT Spa;"OPR8" ! ポレーション•ステータス•V゙タタのSSweep-end ビットを
```



```
50 OUTPUT Spa;"*CLS" ! ステータス•ハイトを卯する
60 OUTPUT Spa;"TS" ! 掃引を開始
70 Mloop: !
80 0UTPUT Spa;"*STB?" ! ステータス•ハイトの出力要求
90 ENTER Spa;S ! ステータス•バ仆を読み込む
100 IF BIT(S,7)=0 THEN GOT0 Mloop ! ポV-ショョンステータス•ビット(掃引終了) が1 に
1 1 0
! セットされるまで待つ
120 STOP
130 END
```

例 HP－17 CW－ACP測定を行い，測定終了後に結果を読み出す（SRQ信号を使用しない場合）

```
10 Spa=708
20 OUTPUT Spa;"ACPST MNL"
30 0UTPUT Spa;"CF1500MZ" ! 中心周波数を1500MHz に設定
40 OUTPUT Spa;"SP250KZ" ! 周波数スパンを250kHzに設定
5 0 ~ O U T P U T ~ S p a ; " R B 1 K Z ; ~ V B 3 K Z " ~ ! ~ R B W : 1 k H z , ~ V B W : 3 k H z ~ に . 訁 殳 ⿱ 宀 ⿱ 一 龰 刂
60 OUTPUT Spa;"ST20SC" ! 掃引時間を20秒に設定
70 0UTPUT Spa;"ADCH50KZ" ! チャンネル•ズースを50kHz に設定
80 0UTPUT Spa;"ADBS21KZ" ! 帯域幅を21kHz に設定
90 OUTPUT Spa;"OPR16" ! オ゚レーション•ステータス•V゙タタのMMeasuring ビットを
100 ! 侪ーブルにする
110 OUTPUT Spa;"*CLS" ! ステータス•ハイトを外方する
120 OUTPUT Spa;"ACP" ! ACP 測定を開始
!GP-IB ア゙Vス(8)を変数に設定
! ACP 測定の条件を'Manual'に設定
130 Mloop: !
140 0UTPUT Spa;"*STB?" ! ステータス•ハイト の出力要求
150 ENTER Spa;S ! ステータス•ハ仆を読み込む
160 IF BIT(S,7)=0 THEN GOT0 Mloop ! ACP 測定終了を待つ
170 OUTPUT Spa;"ACP?" ! ACP 測定結果の出力要求
180 ENTER Spa;Lo,Up! ! ACP 測定結果を読み込む
190 PRINT "-50K:";Lo;",+50K:";Up ! 測定結果を表示
200 END
```

6．プログラム例

```
例 HP-18 シングル掃引の終了ごとにピーク周波数, レベルを読み込む
    (SRQ信号を使用する場合)
```

```
    10 Spa=708
    20 OUTPUT Spa;"SI"
    30 ON INTR 7 GOSUB Ssrq
    40 OUTPUT Spa;"*CLS"
    50 0UTPUT Spa;"OPR8"
    60 ! イネーブル にする
    70 0UTPUT Spa;"*SRE128"
    80 ! イネーブルにする
    90 OUTPUT Spa;"S0"
    ! SRQ 信号送出モードを指定
100 Mloop: !
110 Mend=0 ! 掃引終了フラグ を林
120 0UTPUT Spa;"TS"
    ! 掃引を開始
130 ENABLE INTR 7;2 ! SRQ 割り込みを伩ーブルにする
140 Wint: !
150 IF Mend = 0 THEN G0T0 Wint ! SRQ 割り込みが発生するまで待つ
1 6 0 \text { 0UTPUT Spa;"PS" ! ピータサーチを実行}
170 OUTPUT Spa;"MFL?"" ! マ-カッデー夕 の出力要求
180 ENTER Spa;MF,ML ! ピーク周波数,レべルを読み込む
190 PRINT "Peak Freq:";MF;",Peak Level:";ML ! 読み込んだデータを表示
200 G0T0 Mloop ! 掃引を繰り返す
210 !
220 Ssrq: ! SRQ 割込処理ルーチン
230 S=SP0LL(Spa) ! ステー夕ス•バイトを読み込む
240 Mend=1 ! 掃引終了フラグ を1 にセット
250 RETURN ! メイン月ーチンに復帰
260 !
270 END
```


7．RS－232リモート・コントロール機能

GPIBインタフェースを装備していないコントローラ（パーソナル・コンピュータなど）でも， RS－232インタフェースを用いて本器をコントロールすることができます。

IGPIBリモート・コントロールとの互換性

シリアル・コントロールで使用できるコントロール・コードは，GPIBに特有 なコード，機能といくつかのコマンドを除き，本体のGPIBコードと同じもの を使用できます。

制御可能な機能

シリアル・コントロールを使用すると，以下の機能が制御できます。
－測定条件の設定：パネル上のキー操作と同様に，各種測定条件の入力が できます。

- 設定状態の出力：本器の各種設定状態と，データの読み出しができます。
- ステータス出力：GPIBと同様に，本器の現在の状態を示すステータス・ バイトの読み出しが行えます。

7．RS－232リモート・コントロール機能
－リモート・コントロールの起動
LCL
RS232
とキーを押すと，シリアル・ポートの設定メニュ

一が表示されます。

図8－1 シリアル・ポート選択画面（OPT08，OPT15 インストール時）

リモート・コントロールを起動するには，選択画面からRemote Controlを選択して下さい。

Rx Controlは，OPT08 がインストールされているときのみ表示され，選択できま す。また，Program Loaderは，OPT15 がインストールされているときのみ表示さ れ，選択できます。
＊OPT08 は，R3465／3463のみのオプションです。

パラメータ設定画面

図 8－2 パラメータ設定

転送速度：
データ長：

ストップ・ビット：

転送速度を［600］，［1200］，［2400］，［4800］，［9600］， ［19200］から選択します。
データのビット数を7ビット，8ビットのいずれか に選択します。
ストップ・ビットを1ビット，2ビットのいずれか に選択します。
パリティ・チェック：［NONE］，［ODD］，［EVEN］から選択します。 フロー・コントロール：XON／XOFFを使用するかしないかを選択します。

OPT15 のCONTROL コマンドでシリアル＂ポートのパラメータを変更した場合，変更した値がそのまま引き継がれます。また，OPT08 でRxtestモードに入った場合 にも，特有のパラメータに毀定されます。リモート・コントロールを実行する場合再度パラメータ値を確認して下さい。 ＊OPT08 は，R3465／3463のみのオプションです。

7．RS－232リモート・コントロール機能

接続方法

図 8－3 本体とコントローラの接続

本器側は3線ですが，コントロール側（パーソナル・コンピュータ等）は 3線では入出力できません。

端末エミュレーションとライン制御が異なります。

図 $8-4$ ケーブル結線図

ピン番号 $(9 ヒ ゚ ン)$	信号名	内容
1	DCD ：Data Carrier Detector	受信キャリア検出
2	RxD ：Receive Data	受信データ
3	TxD ：Transmit Data	送信データ
4	DTR ：Data Terminal Ready	データ端末レディ
5	GND ：Ground	シグナル・グランド
6	DSR ：Data Set Ready	データ・セット・レディ
7	RTS ：Request To Send	送信要求信号
8	CTS ：Clear To Send	送信可信号
9	CI ：	N．C

コントローラと本器の間で伝送されるメッセージはASCII コード文字列で， メッセージの終了はキャリッジ・リターン（CR）とライン・フィード（LF）コー ドで行います。

図8－5 データッフォーマット

1．転送データはASC\｜で行って下さい。
2．コントローラからのデータの区切りはCRまたはCRLFで送信して下さい。クエ リ・データは，GPIBのデリミタと同じになります。そのため，シリアル・ポ ートをオープンしたあとに DLOまたはDL3 を送って下さい。（RS－232 リモー ト・プログラム例参照）
－送受信の例
PCからは，
CF 30．0MZ CR
CF 30．0MZ CR LF
のいずれでも認識します。

クエリ・データのフォーマットは，
＋3．000000000000E＋07 CR LF
となります。（DL0またはDL3を送る）
データの区切り（CR，LF）を除く出力データの文字数は，GPIBと同じです。

7．RS－232リモート：コントロール機能

GPIBとの相違点

－コマンドッコード
－トレース・データの入出力はできません。また，出力データでデリミタで区切られて複数出力されるデータま，読みだすことができません。

垩 使用できないコマンド：TAA，TBA，TAB，TBB

－SRQ 割り込みは使用できません。ステータス・バイト読み出しのコマンド を使用して下さい。

使用できないコマンド：SO，S1，S2，ROS
パネル：コントロール

リモート・コントロール実行時は，以下の仕様になります。

- リモート・ランプを点灯しない。
- キーのロックはされません。コントロール中にキー操作を行って設定を変更した場合，コントロール動作が不安定になる場合があります。

リモート』コントロール・プログラム例
実際のプログラムで，リモート・コントロール機能を使用した例です。なお，本項に記載しているプログラム例はすべてマイクロソフト社『Microsoft Quick BASIC』でのプログラム例です。
本器は，シリアル・ラインのコントロールを行っていませんので，結線上出力（PRINT文）を続けるとプログラムの終了か，入力待ち（INPUT文）まで入力 します。このトータルの文字数（CRLFを含む）が 1024 文字を越えないように して下さい。（リミット・ラインの入力を参照して下さい。） プログラム例中にあるOPEN＂COM1：9600，N，8，1，ASC＂FOR RANDOM AS \＃1 は， ボーレート： 9600 bps ，パリティ：なし，データ長：8bit，ストップ・ビット ：1bit，ASCII フォーマット，ランダム・アクセス・モードでオープンする コマンドです。

例1	ピーク・リストの読み出し
	OPEN＂COM1：9600，N，8，1，ASC＂FOR RANDOM AS \＃1 PRINT \＃1，＂DL3＂，GPIBのデリミタをCR LF にする PRINT \＃1，＂CF 30MZ＂，中心周波数を30MHz にする PRINT \＃1，＂PLS LEVEL＂${ }^{(1)}$ ピーク・リストをレベルに設定する PRINT \＃1，＂TS＂，Single掃引をする PRINT \＃1，＂PKLST？＂ヒピーク・リストの読み出し INPUT \＃1，C，F1，L1，F2，L2，F3，L3，F4，L4，F5，L5，F6，L6，F7，L7， F8，L8，F9，L9，F10，L10，Delf，Dell PRINT C，F1，L1，F2，L2，F3，L3，F4，L4，F5，L5，F6，L6，F7，L7，F8， L8，F9，L9，F10，L10，Delf，Dell END
例2	ステータス・バイトで掃引終了を待つ
	OPEN＂COM1：9600，N，8，1，ASC＂FOR RANDOM AS \＃1 PRINT \＃1，＂DL3＂，GPIBのデリミタをCR LF にする PRINT \＃1，＂SI＂，Single掃引をする PRINT \＃1，＂OPR8＂，GPIBのポレーション・レ゙スタの掃引終了ビットをセット PRINT \＃1，＂CLS＂，ステータス・バイトのクリア PRINT \＃1，＂TS＂－Single掃引をする MEAS．LOOP PRINT \＃1，＂＊STB？＂－ステータス・バイトを読み出す INPUT \＃1，STAT IF（STAT AND 128）$=0$ THEN GOTO MEAS．LOOP PRINT \＃1，＂PS＂，ピーク・サーチ PRINT \＃1，＂ML？＂ INPUT \＃1，MLEVEL PRINT MLEVEL END

7．RS－232リモート・コントロール機能
－エラー・メッセージ

リモート・コントロール使用時に表示されるエラー・メッセージは，以下の ものがあります。
－input buffer is overflow
－SIO port is busy

－input buffer is overflow

トータルの入力文字が1024文字を超えてしまう場合に表示されます。

```
例1 リミット•ラインの入力
```

OPEN＂COM1：9600， $\mathrm{N}, 8,1$, ASC＂FOR RANDOM AS \＃1
PRINT \＃1，＂IP＂
PRINT \＃1，＂DL3＂
PRINT \＃1，＂LMTADEL＂
PRINT \＃1，＂UU＂

PRINT \＃1，＂LMTAIN 500．123KZ，70．52DB＂
PRINT \＃1，＂LMTAIN 5．432112MZ，70．52DB＂
PRINT \＃1，＂LMTAIN 5．432112MZ，55．57DB＂
PRINT \＃1，＂LMTAIN 10．012345MZ，55．57DB＂
PRINT \＃1，＂LMTAIN 10．012345MZ，43．25DB＂
PRINT \＃1，＂LMTAIN 15．012345MZ，43．25DB＂
PRINT \＃1，＂LMTAIN 15．012345MZ，30．25DB＂
PRINT \＃1，＂LMTAIN 20．987654MZ，30．25DB＂
PRINT \＃1，＂LMTAIN 20．987654MZ，51．51DB＂
PRINT \＃1，＂LMTAIN 25．123456MZ，51．51DB＂
PRINT \＃1，＂LMTAIN 25．123456MZ，20．38DB＂
PRINT \＃1，＂LMTAIN 30．123456MZ，20．38DB＂
PRINT \＃1，＂LMTAIN 30．123456ML，32．38DB＂
PRINT \＃1，＂LMTAIN 35．456789MZ，32．38DB＂
PRINT \＃1，＂LMTAIN 35．456789MZ，35．55DB＂
PRINT \＃1，＂LMTAIN 40．345678MZ，35．55DB＂
PRINT \＃1，＂LMTAIN 40．345678MZ，40．62DB＂
PRINT \＃1，＂LMTAIN 45．345678MZ，40．62DB＂
PRINT \＃1，＂LMTAIN 45．345678MZ，45．62DB＂
PRINT \＃1，＂LMTAIN 50．345678MZ，45．62DB＂
PRINT \＃1，＂LMTAIN 50．345678MZ，51．62DB＂

PRINT \＃1，＂LMTAIN 55．654321MZ，51．62DB＂
PRINT \＃1，＂LMTAIN 55．654321MZ，54．35DB＂
PRINT \＃1，＂LMTAIN 65．345678MZ，54．35DB＂
PRINT \＃1，＂LMTAIN 65．345678MZ，57．08DB＂
PRINT \＃1，＂LMTAIN 70．987654MZ， $77.08 \mathrm{DB} "$
PRINT \＃1，＂LMTAIN 70．987654MZ，60．52DB＂
PRINT \＃1，＂LMTAIN 75．765432MZ，60．52DB＂
PRINT \＃1，＂LMTAIN 75．765432ML，62．31DB＂
PRINT \＃1，＂LMTAIN 80．123456MZ，62．31DB＂
PRINT \＃1，＂LMTAIN 80．123456MZ，63．54DB＂
PRINT \＃1，＂LMTAIN 85．234567MZ，63．54DB＂
PRINT \＃1，＂LMTAIN 85．234567ML，68．45DB＂
PRINT \＃1，＂LMTAIN 90．765432MZ，68．45DB＂
PRINT \＃1，＂LMTAIN 90． $765432 \mathrm{Mz}, 70.05 \mathrm{DB} "$
PRINT \＃1，＂LMTAIN 95．456789MZ，70．05DB＂’入力されるのは，このラインまで
PRINT \＃1，＂LMTAIN 95．456789MZ，81．29DB＂＇このラインの途中で1024文字を超える
PRINT \＃1，＂LMTAIN 100MZ，81．29DB＂
PRINT \＃1，＂FAOMZ FB100MZ＂
PRINT \＃1，＂LAN＂
END

上記コマンドをすべて入力する場合は，以下のように INPUT文をダミーでは さむことで回避できます。

```
例2 リミット•ラインの入力
```

OPEN＂COM1：9600，N，8，1，ASC＂FOR RANDOM AS \＃1
PRINT \＃1，＂IP＂
PRINT \＃1，＂DL3＂
PRINT \＃1，＂LMTADEL＂
PRINT \＃1，＂UU＂

PRINT \＃1，＂LMTAIN 500．123KZ，70．52DB＂
PRINT \＃1，＂LMTAIN 5．432112MZ，70．52DB＂
PRINT \＃1，＂LMTAIN 5．432112MZ，55．57DB＂
PRINT \＃1，＂LMTAIN 10．012345MZ，55．57DB＂
PRINT \＃1，＂LMTAIN 10．012345MZ，43．25DB＂

7．RS－232リモート・コントロール機能

PRINT \＃1，＂LMTAIN 15：012345MZ，43．25DB＂
PRINT \＃1，＂LMTAIN 15．012345MZ，30．25DB＂
PRINT \＃1，＂LMTAIN 20．987654MZ，30．25DB＂
PRINT \＃1，＂LMTAIN 20．987654ML，51．51DB＂
PRINT \＃1，＂LMTAIN 25．123456MZ，51．51DB＂
PRINT \＃1，＂LIMTYP？＂
＇ダミーのクエリ・コマンド
INPUT \＃1，A\＄
－ダミーの INPUT文
PRINT \＃1，＂LMTAIN 25．123456MZ，20．38DB＂
PRINT \＃1，＂LMTAIN 30．123456MZ，20．38DB＂
PRINT \＃1，＂LMTAIN 30．123456MZ，32．38DB＂
PRINT \＃1，＂LMTAIN 35．456789ML，32．38DB＂
PRINT \＃1，＂LMTAIN 35．456789MZ，35．55DB＂
PRINT \＃1，＂LMTAIN 40．345678MZ，35．55DB＂
PRINT \＃1，＂LMTAIN 40．345678MZ，40．62DB＂
PRINT \＃1，＂LMTAIN 45．345678MZ，40．62DB＂，
PRINT \＃1，＂LMTAIN 45．345678MZ，45．62DB＂
PRINT \＃1，＂LMTAIN 50．345678MZ，45．62DB＂
PRINT \＃1，＂LIMTYP？＂
－ダミーのクエリ・コマンド
INPUT \＃1，A\＄
PRINT \＃1，＂LMTAIN 50．345678MZ，51．62DB＂
PRINT \＃1，＂LMTAIN 55．654321MZ，51．62DB＂
PRINT \＃1，＂LMTAIN 55．654321MZ，54．35DB＂
PRINT \＃1，＂LMTAIN 65．345678MZ，54．35DB＂
PRINT \＃1，＂LMTAIN 65．345678MZ，57．08DB＂
PRINT \＃1，＂LMTAIN 70．987654MZ，57．08DB＂
PRINT \＃1，＂LMTAIN 70．987654MZ，60．52DB＂
PRINT \＃1，＂LMTAIN 75．765432MZ，60．52DB＂
PRINT \＃1，＂LMTAIN 75．765432MZ，62．31DB＂
PRINT \＃1，＂LMTAIN 80．123456MZ，62．31DB＂
PRINT \＃1，＂LIMTYP？＂
＇ダミーのクエリ・コマンド
INPUT \＃1，AS
－ダミーの INPUT文

```
PRINT \＃1，＂LMTAIN 80．123456MZ，63．54DB＂
PRINT \＃1，＂LMTAIN 85．234567MZ，63．54DB＂
PRINT \＃1，＂LMTAIN 85．234567MZ，68．45DB＂
PRINT \＃1，＂LMTAIN 90．765432MZ，68．45DB＂
PRINT \＃1，＂LMTAIN 90．765432MZ，70．05DB＂
PRINT \＃1，＂LMTAIN 95．456789MZ，70．05DB＂
PRINT \＃1，＂LMTAIN 95．456789MZ，81．29DB＂
PRINT \＃1，＂LMTAIN 100MZ，81．29DB＂
```

PRINT \＃1，＂FA0MZ FB100MZ＂
PRINT \＃1，＂LAN＂
END

－SIO port is busy

シリアル・ポートを，2 つ以上の機能で使用しようとした場合に表示されま す。シリアル・ポートの選択画面で確認して下さい。

リモート・コントロールは，シリアル・ポートを使用する以下のオプションを同時に実行することはできません。（リモート・コントロールの起動を参照し て下さい。）

- 0PT08 と同時に実行はできません。
- OPT15 のシリアル・ポートを使用する OUTPUT 32 と同時には実行できません。

